Année scolaire 2024/2025 Durée: 03Heures

Epreuve Standardisée des Compositions du second Semestre : Mathématiques

EXERCICE N°1	(7points
		· F

<u>Partie A</u> (5 points: 1 point pour chaque question)

Dans le tableau suivant, une seule des réponses proposées est exacte pour chaque question. Trouver la bonne réponse pour chaque question.

N^0	Questions	Réponse A	Réponse B	Réponse C
1	$f(x) = x^2 - 3x + 2$	$D_f = \mathbb{R} \backslash \{1; 2\}$	$D_f = \emptyset$	$D_f = \mathbb{R}$
	lors l'ensemble de définition de f		-	
	est:			
2	$\lim_{x \to -\infty} \frac{-x^2 - 9x + 10}{x + 3}$	-∞	+∞	-1
	est égale à			
3	Si $f(x) = \frac{x^2 + 2x + 1}{x}$ alors $f(x)$ égale à :	$x^2 + 2x + \frac{1}{x}$	$x+2+\frac{1}{x}$	$x + 2x + \frac{1}{x}$
4	Si $f(x) = \frac{(x-1)(x+1)}{x^2+5}$ alors f est:	paire	impaire	ni paire et ni impaire
5	la droite d'équation $x = a$ est un axe de symétrie de (C_f) si et eulement si : $\forall x \in D_f$, $2a - x \in D_f$ et	f(-x) = f(x)	f(2a-x)=f(x)	f(2a-x) = -f(x)

Partie B (2 points)

- 1. Répondre par vrai ou par faux aux affirmations suivantes :
 - a) Soit Ω l'univers des possibles. Si A est un événement dans Ω alors $P(A) = \frac{Card(A)}{Card(\Omega)}$ (0,5pt)
 - b) Une suite est géométrique si $u_{n+1} u_n = r$ avec $r \in \mathbb{R}$ (0,5pt)
 - c) Si (u_n) est une suite géométrique de raison q et de premier terme u_0 alors son terme général est donné par $u_n = u_0 \times q^n$ (0,5pt)
 - d) Si A et \overline{A} sont deux événements contraires alors $P(A) + P(\overline{A}) = 1$ **0,5pt**)

Partie A

Compléter les formules suivantes :
$$C_n^p = \frac{\dots}{\dots}$$
 et $A_n^p = \frac{\dots}{\dots}$ (0,5pt + 0,5pt)

Partie B

Lors d'un recrutement, le chef du personnel d'une société a choisi au hasard et simultanément cinq personnes parmi 12 hommes et 8 femmes.

- 1. Déterminer le nombre de choix possibles pour ce recrutement. (1pt)
- 2. Calculer la probabilité des événements suivants :

EXERCICE N°3 (08 points)

Soit la fonction numérique f définie par : $f(x) = \frac{x^2 + 4x + 5}{x + 2}$. On désigne par (Cf) sa courbe représentative dans le plan muni d'un repère.

- 1) Montrer que le domaine de définition Df de f est : Df = IR $-\{-2\}$. (0,5pt)
- 2) Calculer les limites de f aux bornes de son ensemble de définition. (1,5pts)
- 3) Déterminer les réels a, b et c tels que $f(x) = ax + b + \frac{c}{x+2}$. (1pt)
- 4) a) Montrer que (Cf) admet une asymptote oblique (Δ) en $+\infty$ et en $-\infty$ dont on précisera l'équation. (1pt)
 - b) Etudier la position de (Cf) par rapport à l'asymptote oblique (Δ) (0.5pt)
- 5) Montrer que le point $S\binom{-2}{0}$ est un centre de symétrie pour la courbe (Cf) (1pt)
- 6) Etudier les variations de f puis dresser son tableau de variations. (1,5pts)
- 7) Ecrire l'équation de la tangente (T_0) à la courbe (Cf) au point d'abscisse 0 (0,5pt)
- 8) Tracer (Cf) (On représentera les asymptotes et la tangente (T_0)) (0.5 pt)

Bonne Chance !!